赏诗词网

译文

作者:佚名

《大统历》的推算,都来源于《授时历》,只是删去了岁实的消长而已。

  然而《大统历通轨》各种简捷的方法,确实是运算所必需的,书中的次序,也有与《历经》小有差别的。

  如气朔和发敛,《授时历》原来分焉二章,现在合并为一。

  《授时历》盈缩差在日躔即太阳运行部分,迟疾差在月离即月亮运行部分,定朔、经朔分为两处。

  现在是经朔以后,就求走朔,对于使用特别方便。

  推算的纲目有七项:气朔,日躔,月离,中星,交食,五星,四余。

  洪武十七年甲子年为历元。

  上距元至元辛巳年一百零四年。

  岁周:三百六十五万二千四百二十五分,实测没有消长。

  折半是半岁周,四分之一是气象限,二十四分之一是气策。

  日周:一万。

  即一百刻。

  一刻一百分,一分一百秒,秒以下微、纤,都按一百依次分解。

  气应:五十五万零三百七十五分。

  据相距的年数一百零四,求得中积即其问积累的时间是三亿七千六百一十九万九千七百七十五分,加辛巳年的气应五十五万零六百分,得总积时敷三亿七千六百七十五万零三百七十五分,满纪法六十去掉,余数就是《大统历》气应。

  闰应:十八万二千零七十分一十八秒。

  将中积加辛巳年闰应二十万二千零五十分,得闰积三亿七千六百四十万一千八百二十五分,满朔实就减去,余数就是《大统历》闰应。

  转应:二十万九千六百九十分。

  将中积加辛巳年的转应十三万零二百零五分,共得三亿七千六百三十二万九千九百八十分,满转就去掉,余数就是《大统历》的转应。

  交应:十一万五千一百零五分零八秒。

  将中积加辛巳年交应二十六万零三百八十八分,共得三亿七千六百四十六万零一百六十三分,满交终就去掉,余数就是《大统历》交应。

  按《授时历》完成以后,闰应转应交应三个应数,马上就有改动,所以《元史,历志》、《历经》闰应为二十万一千八百五十分,而《大统历通轨》记载闰应二十万二千零五十分,实际上增加了二百分,是因为当时经朔改早了二刻。

  《历经》转应十三万一千九百零四分,《大通历通轨》记载转应十三万零二百零五分,实际上碱去了一千六百九十九分,是因为入转改迟了十七刻弱。

  《历经》交应二十六万零一百八十七分八十六秒,《大统历通轨》交应是二十六万零三百八十八分,寅际上增加了二百分十四秒,是因为正交改早了二刻强。

  有人将《大统历通轨》辛巳年三应与《元史,历志》的相互差异,看作是元统确定的,不对。

  大凡改动历法必须经过测量检验,也就应当详知其始末,为什么要返回去追改《授时历》,自己湮没自己的辛勤操劳呢?所以《大统历通轨》所记述的,是根据《授时历》继续考定的敷据,而《历经》所保存的,则是未定的初稿。

  通余:五万二千四百二十五分。

  朔望月长度:二十九万五千三百零五分九十三秒,一名朔寅。

  折半为望策,又名交望。

  又折半为弦策。

  通闰:十万八千七百五十三分八十四秒。

  月闰:九干零六十二分八十二秒。

  闰限:十八万六千五百五十二分零九秒。

  又名闰准。

  盈初缩末限:八十八万九千零九十二分二十五秒。

  缩初盈末限:九十三万七千一百二十分二十五秒。

  转终:二十七万五千五百四十六分,折半为转中。

  朔转差:一万九千七百五十九分九十三秒。

  日转限:十二限二十。

  转中限:一百六十八限零八三零六零。

  以日转限乘以转中。

  又名限总。

  朔转限:二十四限一零七一一四六。

  以日转限乘以朔转差。

  弦转限:九十限零六八三零八六五。

  以日转限乘以弦策。

  又名限策。

  交终:二十七万二千一百二十二分二十四秒。

  朔交差:二万三千一百八十三分六十九秒。

  气盈:二千一百八十四分三十七秒五十微。

  朔虚:四千六百九十四分零七秒。

  汝限:七千八百一十五分六十二秒五十微。

  盈策:九万六千六百九十五分二十八秒。

  虚策:二万九千一百零四分二十二秒。

  土王策:三万零四百三十六分八十七秒五十宿策:一万五千三百零五分九十三秒。

  纪法:六十万。

  即旬周六十日。

  推算天正冬至:将洪武甲子年以来的积年减一,乘以岁周就是中积,加气应就是通积,满纪法六十就去掉,直到不足纪法的数目,就是天正冬至。

  以一万焉一日,按规定在六十甲子整数外,就是冬至的日辰。

  逐次加上通余,就是下一年的天正冬至。

  推算天正闰余:将中积加上闰应,满朔望月长度就去掉,直到不满一月时长的数目,就是天正闰余。

  累加通闰,就得到次年天正闰余。

  推算天正经朔:将冬至时数碱去闰余,如果不够减,加纪法再减,余数就是天正经朔。

  如果没有闰余,就加五十四万三六七一一六。

  十二个朔望月畏减去纪法。

  有闰余,加二十三万八九七七零九。

  十三个朔望月畏碱去纪法。

  满纪法仍然去掉,就得到第二年的天正经朔。

  如天正闰余在闰限以上,这一年就有闰月。

  推算天正盈缩:将半岁周减去这年的闰余全分,余数就是所求的天芷缩历。

  如果直接求下一年的,在天正宿历内碱去通闰,就得到了。

  藏后在一百五十三日零九以下的,再加朔望月长度,就是下一年的天正缩历。

  推算天正迟疾:将中积加转应碱去这年的闰余全分,余数满了转终就去掉,就是天正的入转。

  如在转中以下是疾历,在转中以上是迟历。

  如果直接求下一年的,加二十三万七一一九一六,十二个转差的积。

  经闰再加转差,都满了转终就去掉,迟历和疾历仍和先前一样。

  如满转中而去掉,就是迟历和疾历相互替代。

  推算天正入交:将中积减去闰余,加上交应,满了交终就去掉,就是天正入交泛日。

  如果直接求下一年的,加六千零八十二分零四秒,十二交差碱去交终。

  经闰加二万九千二百六十五分七十三秒,十三交差减去交终。

  都满了交终仍然去掉,就得到了。

  推算各月经朔及弦望:将天正经朔,加二倍朔望月长,满纪法就去掉,就得到正月经朔。

  用弦策逐次相加,去掉纪法,就得到弦望和次朔。

  推算各恒气:将天正冬至加上三倍气长,满纪法就去掉,就得到立春的恒日。

  用气长逐次相加,去掉纪法,就得到二十四气的恒日。

  推算闰日在哪一月:将朔望月长减去有闰的年份的闰余,余数作为被除数,用月闰与之相除,得敷在规定起算月下一个月数之外的,就是应该有闰日的月份。

  闰月有进退,仍然按定朔没有中气来确定闰月。

  如果减后的余数不够月闲除,或者祇够一个月闰的,闰月就在年前。

  推算各月盈缩历:将天正缩历加二倍朔望月长,减去半岁周,就得到正月经朔之下的盈历。

  逐次加上弦策,就得到各弦望及次朔,如果满半岁周去掉,就进入缩历,满半岁周又去掉,就又恢复为盈历。

  推算初末限:比照盈历在盈初缩末限数以下,缩历在缩韧盈末限数以下,就是初。

  在限敷以上用它减去半岁周就是末。

  推算盈缩差:将初末历的小余用数据表中的盈缩加分相乘作为被除数,用日周一万作为除数与之相除,得数再加它下面的盈缩积,就是盈缩差。

  推算各月的迟疾历:将天正经朔迟疾历加二倍转差,得到正月经朔下的迟疾历。

  逐次加上弦策,得到弦望和次朔,都是满转中就去掉,就是迟和疾相互替代。

  推算迟疾限:将迟疾历各用日转限相乘,就得到限数。

  用弦转限逐次相加,满转中限就去掉,就是各弦望及次朔的限数。

  如果直接求下一月,用朔转限与之相加,也是满转中就去掉,就得到了。

  另一种方法:比较数据表中的日率,有与迟疾历相近而较小的用来相减,余数在八百二十以下的,就是所求的限敷。

  推算迟疾差:将迟疾历与数据表中的日率相减,如不够减,就退…位。

  余数乘以它下面的损益分作为被除数,用八百二十分作为除数与之相除,得数再加它下面的迟疾积,就是迟疾差。

  推算加减差:将经朔弦望下的盈缩差、迟疾差,以盈遇到迟、缩遇到疾为同相加,盈遇到疾、缩遇到迟为异相减,各乘以八百二十分作为被除数,再在迟疾限行度内碱去八百二十分作为定限度作除数,两敷相除就是加减差。

  盈和迟相加,缩和疾相减,不同的项目相碱的,盈多于疾相加,疾多于盈相减,缩多于迟相减,迟多于缩相加。

  推算定朔弦望:将经朔弦望,各用加减差相加减,就是定日。

  看定朔的天干,与后一朔相同的月大,不同的月小,中间没有中气的是闰月。

  弦望在数据表中相同日日出介以下的,就退后一天确定。

  推算各月入交:将天正经朔入交泛日加上二倍交差,得到正月经朔下的入交泛日。

  逐次加上交望,满交终就减去,就得到各月下的入交泛日。

  直接求下一月,加交差就得到了。

  推算土王用事:将谷雨、大暑、霜降、大寒恒气日,诚去土王策,如果不够碱,加纪法再减,就得到土王用事的日子。

  推算发敛加时:将所推算的定朔弦望及恒气的小余,乘以十二,满一万就是一个时辰,按规定从子时后段算起。

  如满五千,也进一个时辰,按规定从子时前段算起。

  整数之外不满一个时辰的,除以一千二百为刻,按规定从初刻算起。

  每个时辰前后两段的刻敷,都以初一二三四为次序,在整数外确定。

  其中第四刻是零敷,只是一刻的三分之一,三个时辰的零敷就合成一刻,以凄足十二时一百刻的数目。

  按古历及《授时历》,都将发敛列为一章。

  所谓发敛,是说太阳运行往返的详细数据,而时间的增加也附在里面,就又用来记往返的时刻,所以叫发敛加时。

  《大统历》采取便于推算的方式,所以合并发敛和气朔为一章,有人用乘除来解释发敛,没有说到它的实质。

  推算盈日:看恒气的小余,在没限以上,是有盈余时刻的气。

  将策余一万零一四五六二五,用十五日除气策。

  用有盈余的气的小余减去它,余数乘以六十八分六六,用气盈除以十五日。

  得数加上恒气大余,满纪法就减去,按规定在六十甲子整数外,就得到盈日。

  求次盈。

  将盈日及分秒,加上盈策,又碱去纪法,就得到了。

  推算虚日:看经朔小余在朔虚以下,就是有虚日的朔。

  将有虚日的朔的小余,乘以六十三分九一,用朔虚除以三十日。

  得数加上经朔大余,满纪法就减去,按规定在六十甲子整数外就是虚日。

  求次虚。

  将虚日及分秒,加上虚策,又碱去纪法,就得到了。

  推算直宿:将通积,以气应减中积。

  减闰虑,用宿会二十八万逐次减去,余数按规定从翼宿数外算起就得到天正经朔直宿。

  将天正经朔直宿,加上两倍宿策,就是正月经朔直宿。

  用宿策逐次相加,就得到各月经朔直宿。

  再用各月朔下的加减差加或碱,就是定朔直宿。

  周天:三百六十五度二十五分七十五秒,折半为半周天,又折半为象限。

  岁差:一分五十秒。

  周应:三百一十五度十分七十五秒。

  按这是元至元辛巳年的周应,是从虚宿七度到箕宿十度的度数。

  洪武甲子相隔了一百零四年,岁差已后退了一度五十四分五十秒,但周应仍用老数字,大概是传授的错误吧。

  推算天正冬至太阳运行在赤道的宿次:将中积,加周应,应该减去从历法起点甲子年以来的岁差。

  满一周天就减去,没有减完的,从虚宿七度起,依照各宿的次序减去,就是冬至加时在赤道上的度数。

  如果求下一年,再减岁差,就得到了。

  推算天正冬至太阳运行在黄道上的宿次:将冬至加时在赤道上的度数,与冬至后赤道的积度相减,余数乘以黄道率。

  再除以赤道率,得敷加黄道积度,就是冬至加时在黄道的度数。

  黄道赤道积度及度率,都见于《历法原理》。

  推算定象限度:以冬至加时的赤道度数,舆冬至加时黄道度数相减,就是黄道赤道差。

  以本年的黄道赤道差,与下一年的黄道赤道差相减,余数除以四,加入气象限内,就是定象限度。

  推算四正定气日:所推算的年份的冬至分,就是冬正定气。

  加上盈初缩末限,满纪法就减去,余数就是春正定气。

  加缩初盈末限,减去纪法,余数就是夏正定气。

  加缩初盈末限,减去纪法,余数就是秋正定气。

  加上盈初缩末限,减去纪法,余数就是下一年的冬正定气。

  推算四正相距的日敷:以前一个正定气的大余,减下一个正定气的大余,加六十日,就得到相距的日数。

  如果次正定气大不够减,就加六十日再减,再加六十日,就是相距的日数。

  推算四正加时在黄道的积度:将冬至加时的黄道度数,逐次加上定象限度,就得到四正加时的黄道积度。

  推算四正加时减分:将四正定气的小余,乘以它们的初日行度,除以日周,就是各正加时的减分。

  冬正行一度零五一零八五。

  春正距夏正九十三日时,行零点九九九七零三度,距九十四时行一度。

  夏正行零点九五一五一六度。

  秋正距冬正八十八日时,行一度零零零五零五,距八十九日时行一度。

  推算四正夜半积度:将四正加时的黄道积度,减去各自的加时减分,就得到了o推算四正夜半黄道宿次:取四正夜半黄道积度,满黄道宿度就减去,就得到了。

  推算四正夜半相距度:将后一正的夜半黄道积度,减去前一正的夜半黄道积度,余数为雨正的相距度,遇到不够减的,加上周天再减。

  推算四正行度加减日差:以相距度舆相距日下的行积度相减,余数用相距日数相除,就是日差。

  从相距度中减去行积度的是加,从行积度中减去相距度的是减。

  秋正距冬至,冬至距春正八十八日,行积度为九十度四零零九,八十九日行积度为九十一度四零一四。

  春正距夏至,夏至距秋正九十三日,行积度为九十度五九九零,九十四日行积度焉九十一度玉九八七。

  推算每日夜半的日度:将四正后每日的行度,在数据表中。

  用日差加或减,就是每日的行定度。

  将四正的夜半日度,用行定度每日相加,满黄道宿度就减去,就是每日夜半的日度。

  推算太阳运行在黄道入十二次的时刻:将入次的宿度,和入次日的夜半日度相减,余数乘以日周,一分作一百分。

  作焉被除数。

  以入次日的夜半日度,与第二天的夜半日度相减,余数作为除数。

  两敷相除,得数再用发敛加时相求,就是入次的时刻。

  月平行度:十三度三十六分八十七秒半。

  周限:三百三十六,折半为中限,又折半为初限。

  限平行度:一度零九分六十二秒。

  太阳限行:八分二十秒。

  上弦:九十一度三十一分四十三秒又四分之望:一百八十二度六十二分八十七秒半。

  下弦:二百七十三度九十四分三十一秒又四分之一。

  交终度:三百六十三度七十九分三十四秒一九六。

  朔平行度:三百九十四度七八七一一五一六八七五。

  推算朔后平交日:将交终分,见气朔历。

  减去天正经朔交泛分,就是朔后平交日。

  如果推算下一月,减去二日的交差三一八三六九,就得到下一月朔后平交日。

  不够减交差的,加交终再碱,其交日又在本月,就是重交月朔后平交日。

  每年必然有重交的月份。

  推算平交入转迟疾历:将经朔迟疾历,加上朔后平交日就是平交入转。

  如在转中以下,迟疾与经朔相同,在转中以上,减去转中就是疾交迟和迟交疾。

  如果推算下一月,逐次减去交转差三千四百二十三分七六,交差内减转差敷。

  就得到了。

  如果不够减,加转中再碱,也是迟疾相互替代。

  推算平交入限迟疾差:将平交入转迟疾历,在推得的气朔内,推算迟疾限殿迟疾差,就得到了。

  推算平交加减定差:将平交入限迟疾差,乘以日率八百二十分,用所入的迟疾限下行度相除,就得到了。

  在迟限用加,在疾限用减。

  推算经朔加时中积.:看经朔盈缩历,见步气朔一节。

  在盈历内即是加暗中积,在缩历内加上半岁周。

  如果推算下一月,逐次加上朔策,满岁周就减去,就是各朔的加时中积,将日改为度。

  如果一月内有二次相交,后交就加上前交经朔加时中积。

  推算正交距冬至加时的黄道积度殿宿次:将朔后的平交日,用月平行度与之相乘作为距后度,加上经朔加时中积,就是各月正交距冬至加时的黄道积度。

  加上冬至加时的黄道日度,见太阳匡行一节。

  用黄道积度表与之相减,直到不满一个宿次,就是正交时月亮的度数。

  如果推算下一月,逐次碱去月平交朔差一度四六三一零二。

  用交终度减天周,其余数应该是一度四六四零八零。

  遇到重交月,与下一朔相同。

  后面仿照此处。

  推算正交日辰时刻:将朔后平交日,加上经朔,减去纪法,用平交定差相加或相减,其日数在规定的六十甲子整数之外,小余依照发敛加时推求,就得到正交日辰时刻。

  如果推算下一月,逐次加上交终,满纪法就减去。

  如果遇到重交,推算四正在赤道的宿次:将冬至的赤道日度,逐次加上气象限,满赤道积度就减去,就是四正加时的赤道日度。

  推算正交黄道在冬至夏至后的初末限:看正交距冬至加时的黄道积度,在半岁周以下的为冬至以后,半岁周以上的减去半岁周,余数为夏至以后。

  又看冬至夏至后的度数,在气象限以下的就是初限,以上的减去半岁周,余数就是末限。

  推算下一月的,如果本月是初限,就逐次碱去月平交朔差,余数就是下一月的初限。

  不够减的,反过来用月平交朔差来碱,余数就是下一月的末限。

  如果本月是末限,就逐次加上月平交朔差,就是下一月的末限,如果满了气象限,就减去半岁周,余数就是下一月的初限。

  推算定差度:将初末限乘以象极总差一分六零五五零八,就是定差度。

  象极总差,是以象隈除以极差,其数字应该是十六分零五四四二。

  如果推算下一月的初限就逐次减去,末限就逐次相加,都按极平差二十三分四九零二加或减。

  极平差,是用月平交朔差,乘以象极总差,其敷字应该是二十三分五零四九。

  推算距差度:将极差十四度六六,减去定差度,就得到了。

  求下一月,用极平差与之加或减。

  初限相加,末限相减。

  推算定限度:将定差度乘以定极总差一分六三七一零七,定极总差是用极差除以二十四度,其数字应该是一度六三七一零七。

  得敷看正交在冬至后的减,在夏至后的加,都加或减九十八度,就得到了。

  推算月道与赤道的正交宿度:正交在冬至后的,将春正赤道积度,减去距差度初限加末限的和。

  在夏至以后的,将秋正赤道积度,加上距差度初限减末限的和。

  得数满赤道积度表数目的就减去,就得到了。

  推算月道与赤道正交后的积度及入初末限:根据月道与赤道正交所入的某个宿次,就将本宿的赤道全度,减去月道与赤道的正交宿度,余数就是正交后的积度。

  将赤道各宿的赤道全度逐次相加,满气象限就碱去,就是半交后。

  又满气象限而减去,是中交后。

  再满再减,是半交后。

  看各交积度,在半象限以下的是初限,在半象限以上的再碱象限,余数就是末限。

  推算定差:将每交的定限度,与初末限相减相乘,得数除以一千定焉度,就得到了。

  正交、中交后为加,半交后为减。

  推算月道定积度及宿次:将月道与赤道各交后每宿的积度,舆定差相加或相减,就是各交月道的积度。

  加上月道与赤道的正交定宿度,就是正交后宿度。

  用前一宿的定积度与之相减,就得到各交月道的宿次。

  活象限例将正交后的宿次,加前交后半交末宿的定积度,就是活象限。

  如果正交后宿次度数少,加上前交相差的度数,退一宿取正交后的宿次再加上气象限就是了。

  如果遇到换交的月份,用前交前半交末宿的定积度相加,就是换交的活象限。

  假如前交正交是干宿,后交正交是角宿,前交就欠一个斡宿的宿度。

  求活象限时,正交后的宿次,不从翼宿下取定积度相交,仍然在干宿下取定积度。

  又如前交正交是干宿,后交正交是翼宿,前交就多一个翼宿的宿度。

  求活象限时,正交后的宿次,不从翼宿下取定积度相加,仍然在张宿下取定积度。

  推算相距日:将定上弦大余,减去定朔大余,就得到了。

  从上弦到望,望到下弦,下弦到朔与此相仿。

  不够减的,加纪法相减。

  推算定朔弦望入盈缩历及盈缩定差:将各月朔弦望的入盈缩历,用朔弦望加诚差相加或相减,都在推算气朔一节中。

  就是定盈缩历。

  盈历在盈初限以下是盈初限,在以上用半、岁周相减,余数就是盈末限。

  缩历在缩初限以下为缩初限,在以上用半岁周相减,余数就是缩末限。

  依照推算气朔一节内的方法求盈缩差,就是盈缩定差。

  推算定朔弦望加时中积:根据定盈缩历,如是盈历在朔,就是加时中积,在上弦加气象限,在望加半岁周,在下弦加三象限。

  如是缩历在朔,加半岁周,在上弦加三象限,在望就是加时中积,在下弦加气象限,加后满周天就碱去。

  推算黄道加时定积度:将定朔弦望加时中积,用它下面的盈缩定差,盈相加,缩相减,就得到了。

  推算赤道加时定积度及宿次:取黄道加时定积度,在周天一象限以下为至后,一彖限以上减去为分后,满两象限碱去为至后,满三象限碱去为分后。

  将分至后的黄道积度,用数据表内分至后的积度与之相减,余数用它下面的赤道度率相乘,除以黄道度率,得敷加入分至后积度,然后舆减去的象限相加,就是赤道加时定积度。

  将赤道加时定积度,加上天正冬至加时赤道日度,满赤道积度表数目的就减去,就得到了定朔弦望赤道加时宿次。

  推算正半中交后积度:取定朔弦望加时赤道宿次,根据朔弦望在什么交后,正半交,中半交。

  就以什么交后的稹度,在朔望加时赤道宿的前一宿相加,就是正半中交后积度。

  满气象限碱去,就是正半中换交。

  推算初末限:看正半中交后积度,在半象限以下的就是初限,以上的减去气象限,余数就是末限。

  推算月道与赤道定差:将所求交的定限度,与初末限相减或相乘,得敷除以一千为度,就是定差。

  在正交、中交为加差,在半交为减差。

  推算正半中交加时月道定积度:将正半中交后积度,与定差相加或相减,就是朔弦望加时月道定积度。

  推算定朔弦望加时月道宿次:将定朔弦望加时月道定积度,取交后月道定积度,在所处的宿位的前一宿减去,就得到了。

  遇到转交,前面的积度就多,所处位置的积度少不够减。

  从半交转正交,加这一交的活象限再减。

  从正交转半交,从半交转中交,从中交转半交,都加气象限再减。

  推算夜半入转日:将经朔弦望迟疾历,用定朔弦望加减差与之相加或相减。

  在疾历,,就是定朔弦望加时入转日。

  在迟历,用加转中置定朔弦望加时入转日,减去定朔弦望小余,就是夜半入转日。

  遇到入转日少不够减的,加转再诚。

  推算加时入转度:将定朔弦望的小余,舍去秒数,取夜半入转日之下的转定度与之相乘,除以一万定为分,就得到了。

  推算定朔弦望夜半入转积度及宿次:将定朔弦望加时月道定积度,减去加时入转度,就是夜半积度。

  如果朔弦望加时定积度由初换焉交,就不够减,半正相接,用活象限,正和半、中和半相接,加气象限,然后减加时入转度,那么正为后半,后半为中,中为前半,前半焉正。

  将朔弦望夜半月道定积度,依照推算定朔弦望加时月道宿次的方法相减,就是夜半宿次。

  推算晨昏入转日及转度:将夜半入转日,用定盈缩历查检数据表中本日下的晨分相加,就是晨入转日。

  满转终碱去。

  将本日的晨分,取夜半入转日下的转定度相乘,除以一万定单位为分,就是晨转度。

  如求昏转日的转度,按方法检索日下的昏分,就得到了。

  推算晨昏转积度及宿次:将朔弦望夜半月道定积度,加上晨转度,就是晨转积度。

  如求昏转积度,就加昏转度,满气象限碱击,就换交。

  如推算夜半积度的时候,因朔弦望加时定积不够减转度,就用半正相接,而加活象限相减的,现在又换成正交,就用活象限相减。

  将晨转积度,依照前面的方法相减,就是晨分宿次。

  将昏转积度,按方法相减,就是昏分宿次。

  推算相距度:朔与上弦相距,上弦与望相距,用昏转积度。

  望与下弦相距,下弦与朔相距,用晨转积度。

  将后段的晨昏转积度,与前段比较同交的,直接用前段晨昏转积度相减,余数就是相距度。

  如果后段与前段两段相交的,从正入半,从半入中,从中入半,都加气象限。

  从半入正,加活象限。

  然后用前段晨昏转积度相减。

  如果后段与前段连接三交的,其中没有从半入正的,就加二气象限,其中有从半入正的,就加一活象限,一气象限,用前段晨昏转积度相减。

  推算转定积度:将晨昏入转日,朔至弦,弦至望,用昏。

  望至弦,弦至朔,用晨。

  用前段碱后段,不够碱的,加二十八日再减,就是晨昏相距日。

  从前段下,在表内检索晨昏相距日相同的,取用它的转定积度。

  如果朔弦望相距日少于晨昏相距日一日的,就在表中晨昏相距日相同的地方,取用它的转积度,碱去转定极差十四度七一五四,余数就是前段至后段的转定积度。

  推算加减差:以相距度与转定积度相减的差作为被除数,用朔弦望相距日作为除数与之相除,得敷比相距度多的就是加差,少的就是减差。

  推算每日月亮的行定度:根据朔弦望晨昏入转日,在迟疾转定度表中取该日的转定度,逐日用加减差相加或相减,到所求的一日为止,就得到了。

  推算每日月亮运行的晨昏宿次:将朔弦望的晨昏宿次,加上每日的月亮行度,满月道宿次减去,就得到了。

  推算月道舆赤道正交后的宫界积度:根据月道与赤道正交后各宿的积度宫界,某宿位次在后的,就加上,就是某宫之下正交后的宫界积度。

  求下一宫,逐次加上宫率三十度四三八一,满气象限减去,就得到各宫之下半交、中交后的宫界积度。

  推算宫界定积度:宫界积度在半象限以下的为初限,以上的减去气象限,余数为末限。

  将某交的定限度,舆初末限相减相乘,得敷除以千就是度,在正交、中交是加差,在半交是减差。

  将宫界正半中交后积度,减去定差,就是宫界定积度。

  推算宫界宿次:根据宫界定积度,在月道内取在它前一位的宿次与之相减,不够减的,加气象限相减。

  推算每月每日之下的交宫时刻:将每月的宫界宿次,减去入交宫日的月亮晨昏宿次。

  如不够减,加宫界宿次前一宿次度数相减,余数乘以日周,除以本日的月亮行定度,得数又根据定盈缩历取数据表本日下的晨昏分相加。

  晨加晨分,昏加昏分。

  如果满日周交宫在次日,不满日周在本日,依照发敛推算,就是交宫时刻。

  推算每日夜半赤道:将推算到的每日夜半的黄道度,见太阳运行一节。

  按法则与黄道积庋相减,余数除以黄道率,再加赤道积度。

  又加上天正冬至的赤道度,如在春正之后,再加一象限,夏至后加半周天,秋正后加三象限,就是每日夜半的赤道积度。

  推算夜半赤道宿度:取夜半赤道积度,用赤道宿度依次相减,就是本日夜半的赤道宿度。

  推算晨距度及更差度:将数据表中每日的晨分,乘以三百六十六度二十五分七十五秒作为被除数,除以日周,就是晨距度。

  晨距度加倍,除以五,就是更差度。

  推算每日夜半中星:将推算到的每日夜半赤道宿度,加半周天,就是夜半中星积度。

  用赤道宿度依次相减,就是夜半中星宿度。

  推算昏旦中星:将夜半中星积度,减晨距度,就是昏中星积度。

  用更差度逐次相加,就是每更及旦的中星积度。

  都满了赤道宿度,减去,就得到了。

  以晨分的五分之一,加倍就是更率。

  更率的五分之一就是点率。

  凡是昏分,就是一更一点,逐次加上更率就是各更。

  凡是交更就是一黠,逐次加上点率就是各点。

参考资料:

1、 佚名.道客巴巴.http://www.doc88.com/p-9671900034457.html
    

《明史》是二十四史最后一部,共三百三十二卷,包括本纪二十四卷,志七十五卷,列传二百二十卷,表十三卷。它是一部纪传体断代史,记载了自朱元璋洪武元年(公元1368年)至朱由检崇祯十七年(公元1644年)二百多年的历史。其卷数在二十四史中仅次于《宋史》,其修纂时间之久、用力之勤则是大大超过了以前诸史。《明史》虽有一些曲笔隐讳之处,但仍得到后世史家广泛的好评。